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ABSTRACT 

The utilization of artificial intelligence (AI) techniques in infrastructure management has emerged as a 
transformative approach, facilitating predictive modeling and optimization in various sectors. In this 
context, pavement maintenance management represents a critical area where the application of AI holds 
significant promise. This study presents a comprehensive methodology for optimizing resource 
allocation and decision-making for pavement resurfacing projects, employing the power of artificial 
neural networks (ANNs). The primary objective of this study is to enhance the efficiency of pavement 
maintenance management, particularly focusing on the Khulna Metropolitan City road network. ANNs 
are employed to construct predictive models for crucial parameters of pavement maintenance history. 
Leveraging their capacity for pattern recognition within complex datasets, ANNs deliver precise 
predictions essential for informed decision-making in maintenance planning. To address the 
optimization challenge inherent in resource allocation. The results of applying this integrated AI-driven 
methodology to the Khulna Metropolitan City road network reveal its capability. Not only does it 
streamline a decision-making processes, but it also significantly improves the allocation of resources, 
ensuring cost-effectiveness and timely interventions. This approach represents a valuable contribution 
to pavement maintenance management in urban environments. The fusion of AI techniques offers a 
promising avenue for revolutionizing pavement maintenance management. The approach presented in 
this study demonstrates it’s potential to transform the way infrastructure assets are managed, paving the 
way for more sustainable and efficient urban road networks. 
 
Keywords: Artificial neural networks, Pavement maintenance management, Resurfacing interventions, 
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1. INTRODUCTION 

As urbanization continues its rapid pace, municipalities and urban planners globally are grappling with 
the challenge of effectively managing and maintaining critical urban infrastructure. The road network, 
a lifeline for urban mobility, plays a pivotal role in facilitating seamless movement (Koc et al., 2020). 
The economic and social prosperity of a city is substantially affected by the condition and resilience of 
its roadways (Ali et al.,2023). In Khulna Metropolitan City, a rapidly expanding urban centre, 
management of challenges associated with deteriorating pavements becomes increasingly complex. 
 
Deteriorating pavements result in amplified travel times (Gal et al., 2017), heightened vehicle 
maintenance costs, and safety concerns for commuters (Li & Yang, 2023). Effectively managing 
pavement maintenance is imperative for ensuring sustainable development and the well-being of a city 
(Li et al., 2022). 
 
In the domain of pavement management research, a variety of studies emerges. Every one of these 
studies contributes technological advancements to the framework of decision-making for maintenance 
strategies. One noteworthy investigation focuses on automating decision-making processes in highway 
pavement preventive maintenance by employing deep learning techniques. (Guerrieri & Parla, 2022). 
This endeavour seeks to imbue the decision-making framework with heightened accuracy and 
efficiency, ultimately prolonging the life expectancy of highway pavements. 
 
From orchestrating maintenance plans for airport pavements with a fusion of supervised machine 
learning and reinforcement learning (Marugán, 2023), to finely tuning artificial neural network models 
for more accurate rutting prediction, these studies together showcase the progressive sophistication in 
road maintenance methodologies. 
 
In a parallel venture, Researchers explore the domain of asphalt pavements, formulating an intelligent 
decision-making model for preventive maintenance. This model distinctively incorporates Particle 
Swarm Optimization (PSO) and Gated Recurrent Units (GRU) within neural networks, providing an 
advanced tool for decision support in scenarios related to asphalt pavement maintenance. (Li et al., 
2022). 
 
As we explore the intricacies of pavement management in Khulna Metropolitan City, some influential 
studies harmoniously guide our direction. One navigates the intricate domain of airport pavements, 
intertwining supervised machine learning and reinforcement learning for a nuanced maintenance 
strategy (Barua & Zou, 2022). In parallel, a refined artificial neural network model emerges, 
meticulously optimizing input variables to fortify rutting prediction accuracy (Wang et al., 2022). 
Concurrently, recent strides in computer vision applications cast a dynamic light on pavement distress 
and conditions (Ayman & Fakhr, 2023). 
 
Expanding the horizon, another facet of the current studies focuses on deploying a spectrum of machine-
learning techniques for the evaluation of pavement conditions (Sholevar et al., 2022). The goal here is 
to comprehensively explore the potential of various algorithms in assessing and predicting the state of 
road pavements, addressing the intricacies of diverse urban infrastructure. 
 
Meanwhile, the mathematical modelling approach takes centre stage in estimating the pavement quality 
index, particularly for flexible pavements. Genetic algorithms and artificial neural networks are 
harnessed to refine the modelling process, shedding light on the overall quality of flexible pavement 
structures (Hanandeh, 2022). 
 
In a panoramic view of pavement performance, a study undertakes the task of continuous monitoring 
through a machine learning algorithm. The emphasis here is on real-time assessment, enabling adaptive 
decision-making based on the dynamic conditions experienced by road pavements (Cano-Ortiz et al., 
2022). 
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These collective efforts within current studies not only underscore the multifaceted nature of pavement 
management but also spotlight the potential for technological interventions to redefine the landscape 
(Li et al., 2023). However, as this study embarks on its unique contribution, it is crucial to identify and 
address the existing gaps that form the groundwork for the proposed modelling of pavement 
maintenance management in Khulna Metropolitan City. 
 
Moreover, while various studies concentrate on prediction models for specific distress types such as 
rutting, potholes, and pavement evenness, there is a lack of an overarching framework that integrates 
these predictions into a holistic road resurfacing strategy. This study seeks to address these gaps by 
formulating an ANN model that not only predicts pavement resurfacing type but also aids in decision-
making for optimal maintenance strategies in the context of Khulna Metropolitan City. 

2. METHODOLOGY 

This research introduces the Type of Resurfacing Prediction Model, employing a neural network to 
categorize optimal resurfacing types based on diverse road maintenance contract parameters. By 
analysing temporal, contract-specific, spatial, and administrative factors, this model pioneers enhanced 
decision-making precision in road maintenance planning.  

2.1 Resurfacing Prediction Model 

The Type of Resurfacing Prediction Model is designed to categorize the required resurfacing type based 
on various input parameters related to road maintenance contracts and pavement conditions. The input 
parameters encompass a comprehensive set, including Start Date, Contract ID, Pavement Condition, 
Duration of Work, Contract Value, Road Chainage, Length of Work, and Respective Division. Notably, 
the Pavement Condition parameter encapsulates critical pavement distress data. This data, combined 
with the other contextual parameters, forms the foundation for predicting the most suitable resurfacing 
strategy for a specific road maintenance scenario. 

2.1.1 Model Architecture 

The neural network utilized in this study adopts a multilayer perceptron with a Backpropagation 
algorithm. The architecture consists of three layers: 
- Input Layer: Neurons are assigned to each parameter, including Start Date, Contract ID, Pavement 
Condition, Duration (Days), Contract Value (Lac Taka BDT), Start Road Chainage (Km), End Road 
Chainage (Km), Length of Work (Km), and Respective Division. 
- Hidden Layer: Intermediate layers, comprising five hidden layers, each equipped with 50 neurons, 
serve as the pivotal components for processing the input data. 
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Figure 1: Architecture of the neural network 
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- Output Layer: One neuron representing the predicted Type of Work. 
 
Training the neural network involves utilizing examples defined by historical data, encompassing 509 
instances. Each instance features specific input parameters and the corresponding observed type of 
work. 

2.2 Input Variables for Resurfacing Prediction 

The following input variables are taken into account when training the neural network: 

2.2.1 Condition Factors 

Pavement Condition: This parameter serves as a critical input factor for an Artificial Neural Network 
model, providing essential insights into the distress and health status of the pavement. The Pavement 
Condition parameter incorporates a range of distress indicators. Some of them are: 

2.2.1.1 Surface Distress 

 Cracking: Presence and extent of surface cracks. 
 Rutting: Deformation or depressions in the road surface caused by traffic.  

2.2.1.2 Structural Distress 

 Fatigue Cracking: Indications of structural stress and fatigue. 
 Alligator Cracking: Interconnected or interlaced cracks resembling an alligator's skin.  

2.2.1.3 Functional Distress 

 Roughness: Unevenness or irregularities affecting the road's smoothness. 
 Potholes: Depressions or cavities in the road surface.  

2.2.1.4 Environmental Distress 

 Weathering: The effects of weather conditions on the pavement material. 
 Water Damage: Impacts from water infiltration and drainage issues.  

2.2.1.5 Maintenance History 

 Previous repair or maintenance activities undertaken on the pavement.  
 

2.2.2 Temporal Factors 

- Start Date: The initiation date of the road maintenance project. 
- Duration (Days): The timeframe required to complete the maintenance work. 

2.2.3 Contract Details 

- Contract ID: A unique identifier for each road maintenance contract. 
- Contract Value (Lac Taka BDT): The monetary value associated with the contract. 

2.2.4 Spatial Factors 

- Start Road Chainage (Km): The initial chainage points of the road section under maintenance. 
- End Road Chainage (Km): The final chainage points of the road section under maintenance. 
- Length of Work (Km): The distance covered by the maintenance work. 

2.2.5 Administrative Factors 

- Respective Division: The administrative division overseeing the maintenance project. 
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2.3 Output Parameter 

The output parameter is the "Type of Work," representing the categorization of the required resurfacing 
type based on neural network predictions. 

3. CASE STUDY 

3.1 Resurfacing Prediction Model 

The Resurfacing Prediction Model aims to forecast optimal road resurfacing types based on a 
comprehensive set of input parameters inherent to road maintenance contracts. This model employs a 
neural network architecture for predictive analytics. 

3.1.1 Model Architecture 

The neural network architecture follows a sequential design, comprising an input layer, five hidden 
layers with 150 neurons each using the ReLU activation function, and an output layer that classifies the 
anticipated kind of work using a Softmax activation function. The selection of this architecture resulted 
from trial and error, proving successful in analogous predictive modelling tasks. 

3.1.2 Model Training 

The model was trained using a dataset of 509 instances, encompassing key input parameters: Start Date, 
Contract ID, Pavement Condition, Duration (Days), Contract Value (Lac Taka BDT), Start Road 
Chainage (Km), End Road Chainage (Km), Length of Work (Km), and Respective Division. Twenty 
percent of the data was reserved for testing, while the remaining eighty percent was used for training. 
The representation of eight output corresponds to eight classes, spanning from class 0 to 7. The sparse 
categorical Crossentropy loss function and Adam optimizer were used throughout the training phase, 
and accuracy was used as a performance parameter. 

3.1.3 Evaluation Metrics 

The model assessment involved a comprehensive analysis, including training and validation metrics, 
MSE, R Square values, graphical representations depicting measured vs. predicted values, error 
histograms, auto-correlation plots, confusion metrics, a detailed classification report, precision-recall 
curves, ROC curves, and autocorrelation analysis. This thorough evaluation provided a nuanced 
understanding of the model's performance across various dimensions.  

3.1.3.1 Training and Validation Loss Values 

While the validation loss is computed using a different dataset that the model did not observe during 
training, the training loss is determined using the training dataset. The objective is to see a gradual 
decrease in validation loss as well as training loss, demonstrating efficient learning without overfitting.  

3.1.3.2 Training and Validation Accuracy Values 

Accuracy values indicate the proportion of correctly classified instances. Training accuracy is computed 
on the training dataset, while validation accuracy is determined on a separate dataset. Monitoring both 
training and validation accuracy helps assess how well the model generalizes to unseen data. Figure 2 
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shows that the loss for the test set is a little bit higher than usual. The results indicate that the dataset 
utilized for model training and testing has certain characteristics (Terrin et al., 2003). There must be a 
more reliable dataset. 

3.1.3.3 Confusion Metrics 

Confusion matrices furnish a comprehensive insight into the performance of the model in a 
classification task. It separates forecasts into four groups: true positives, true negatives, false positives, 
and false negatives. This facilitates the recognition of the model's strong points and potential weak 
points. Here figure 3 shows that class 0,2,4 has a higher accuracy and other classes have a little lower 
than expected. 
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3.1.3.4 Classification Report 

Key classification parameters, including recall, precision, and F1-score for every class, are summarized 
in great detail in a classification report. It provides a more detailed understanding of how well the model 
performs across various classes. Table 1 indicates that the model performs well for Class 2 and has 
excellent precision for Class 1, but it does not assist in Class 7. The model's overall performance is 
summed up in Table 2. The percentage of successfully identified situations is reflected in the accuracy 
of 77%. The weighted average and macro average precision, recall, and F1-score offer thorough 
insights, taking into account the evaluation's class balance and distribution. 
 
 
 
 
 

Table 1: Classification report of different output 

Class 0 1 2 3 4 5 6 7 

Precision 0.63 1 0.85 1 0.76 0.80 0.60 0 

Recall 0.56 1 0.87 1 0.79 0.50 0.75 0 

F1-Score 0.59 1 0.86 1 0.78 0.62 0.67 0 

Support 9 2 53 2 24 4 4 0 
 

Table 2: Aggregated metrics for the entire model 

 Accuracy Macro avg weighted avg 

Precision 0.79 0.70 0.80 

Recall 0.79 0.68 0.79 

F1-Score 0.79 0.69 0.79 

Support 0.79 102 102 

Figure 3: Confussion metrics of different output classes 
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3.1.3.5 Comparison between Measured and Predicted Value 

Visual comparisons between measured and predicted values provide insights into the model's accuracy. 
Figure 4 shows that in the learning phase, the predicted value was almost aligned with the measured 
value. But in the test data, the accuracy was a bit low.  

3.1.3.6 Correlogram of Training and Testing Data 

The autocorrelation plot for model validation visually represents the correlation between prediction 
errors at different time lags. This analysis helps identify any temporal patterns or dependencies in the 
model's performance. A well-distributed autocorrelation plot with minimal structure suggests that the 
model has effectively captured and accounted for temporal dependencies in the data, contributing to its 
reliability. A lower deflection for training data suggests a more stable performance over time, while a 
higher deflection for test data indicates increased variability in prediction errors. In Figure 5, the 
contrasting maximum lag values (200 for training and 100 for testing) suggest that the model exhibits 
more pronounced temporal dependencies in the training data. However, it faces difficulties in extending 
this behaviour to unseen test instances. 
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3.1.3.7 Precision-Recall Curve 

Precision-recall curves represent the trade-off between precision and recall at different classification 
thresholds. In figure 6 it shows that for classes 1, 3, and 6, the AUC value is 1, which indicates that for 
that class the learning for training was good. In classes 0, 2, 4, and 5, the AUC value is higher than 0.5 
which is also good (Ramya & Ganapathy, 2023). But in class 7, the AUC value represents that the 

learning was not enough. As in the total dataset, only 49 samples have class 7 type. For this, the learning 
and prediction were not enough to perform a good result.  

Figure 6: Precision-Recall Curves of different output classes 
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3.1.3.8 ROC Curves 

 Receiver Operating Characteristic (ROC) curves illustrate the model's trade-off between sensitivity and 
specificity at various categorization thresholds. The Area Under the Curve (AUC-ROC) summarizes 
the overall performance, with a higher AUC indicating improved class discrimination. The ROC curve 
assesses the trade-off between true positive rate and false positive rate to show how well a model can 
classify data across different thresholds. A higher AUC value signifies better discrimination ability. In 
Figure 7, Class 1 and Class 3 achieve perfect discrimination with AUCs of 1, while Classes 0, 2, and 6 
exhibit strong discriminative performance with AUCs of 0.86, 0.87, and 1, respectively (Terrin et al., 
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2003). However, Class 5 demonstrates a moderate discriminative ability with an AUC of 0.74. The 
"nan" AUC value for Class 7 suggests challenges in computing due to potential data scarcity or rare 
occurrences that need further investigation.  
 
This meticulous training and evaluation process ensures the Resurfacing Prediction Model's proficiency 
in providing accurate and reliable predictions for the optimal type of road resurfacing required in diverse 
maintenance scenarios. 

4. CONCLUSIONS 

The developed neural network model, designed for predicting road resurfacing types, has exhibited 
commendable performance across a spectrum of evaluation metrics. Demonstrating an overall test 
accuracy of 77.45%, the model showcases its proficiency in accurately classifying diverse road 
maintenance instances. Precision, recall, and F1-score metrics for each specific road resurfacing type 
underscore the model's effectiveness in capturing class-specific nuances. Notably, achieving a perfect 
AUC for certain classes reflects the robust discriminative power of the model. 
 
Precision, recall, and F1-score macro and weighted averages highlight balanced performance across 
various classes, considering both class equality and distribution. The model's ability to generalize from 
the training set to the test set is evident in the consistent performance metrics. Despite encountering 
challenges in certain classes, the model provides valuable insights into road maintenance categorization. 
 
However, it is crucial to acknowledge the deficiency in data for Class 7, which may have impacted the 
model's accuracy in predicting this specific road resurfacing type. To enhance the model's effectiveness, 
addressing this data scarcity by obtaining more representative samples for Class 7 is imperative. 
Increasing the availability of data for this class will likely result in a more robust and reliable road 
maintenance prediction system.  
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